

Project number: 693 729

Project acronym: smarticipate

Project title: smart open data services and impact assessment for open governance

Instrument: Horizon2020

Call identifier: H2020-INSO-2015-CNECT

Activity code: INSO-1-2015

Start date of Project: 2016-02-01

Duration: 36 month

Deliverable reference number and title (as in Annex 1): D6.1 Integration Requirements Report

Due date of deliverable (as in Annex 1): PM 12

Actual submission date: see “History” Table below

Revision:

Organisation name of lead contractor for this deliverable:

GeoVille

Project funded by the European Commission,

Horizon2020, topic INSO-1-2015

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the

Commission Services)

RE Restricted to a group specified by the consortium

CO Confidential, only for members of the consortium (including the

Commission Services)

smarticipate Deliverable TemplateIntegration Requirements Report

2

Title:

D6.1 – Integration Requirements Report

Author(s)/Organisation(s):

Norman Kießlich, Maria Lemper, Michel Schwandner, Wolfgang Stemberger (GeoVille)

Working Group:

WP6: GeoVille, Fraunhofer IGD, AIT, WeTransform, UWE, Hamburg, RBKC, Rome

References:

Short Description:

This report specifies the system, hardware, software and data along with integration concept and

deployment flowchart.

Keywords:

Deployment, integration, testing

History:

Version Author(s) Status Comment Date

001 Maria Lemper,

Wolfgang Stemberger

rfc Table of contents 26.11.2016

002 Norman Kießlich rfc Chapters 1,2,3 17.01.2017

003 Maria Lemper,

Wolfgang Stemberger

Rfc Review and input to chapter 2.6 25.01.2017

006 Maria Lemper Final Adjustments based on review

comments

06.02.2017

Review:

Version Reviewer Comment Date

smarticipate Deliverable TemplateIntegration Requirements Report

3

004 Nicole Schubbe Quality Review 30.01.2017

005 Jan Peters-Anders Quality Review 03.02.2017

smarticipate Deliverable TemplateIntegration Requirements Report

4

1 INTRODUCTION .. 6

2 INTEGRATION REQUIREMENTS .. 7

2.1 SYSTEM COMPONENT SPECIFICATION ...7

2.1.1 Hardware ... 7

2.1.2 System component integration .. 8

2.1.3 Logging .. 15

2.2 DATA SPECIFICATION.. 17

2.2.1 Data storage ... 17

2.2.2 Metadata standard .. 17

2.2.3 Data integration ... 19

2.3 DATA REQUIREMENTS .. 19

2.3.1 Data requirements: Hamburg ... 20

2.3.2 London .. 22

2.3.3 Rome .. 23

3 DEPLOYMENT ... 25

3.1 CONTINUOUS INTEGRATION (CI) / CONTINUOUS DEPLOYMENT (CD) ... 25

3.2 COMPONENT TESTING .. 25

3.2.1 GitLab.. 26

smarticipate Deliverable TemplateIntegration Requirements Report

5

FIGURES

Figure 1: smarticipate's overall system architecture .. 9

Figure 2: Virtual Machines (left) vs. Docker Images (right) ... 10

Figure 3: Schematic representation of a micro service providing a RESTful API wrapped in a Docker

container. ... 11

Figure 4: Example of a RESTful API documented with Swagger-UI. .. 11

Figure 5: Detailed overview of an API method (here: POST) along with interactive testing capabilities. 12

Figure 6: The workflows embedded within the scenarios trigger requests to micro services located in the

back end. ... 13

Figure 7: A control component capable of supervising a sequential execution of services is facilitating the

communication between front end and back end. ... 14

Figure 8: A request that prompts a chain execution of micro services (B, C,D and F) is executed with the

services being aware of their successors and completing the workflow autonomously before feeding the

result to the front end. .. 14

Figure 9: Reading, processing and writing block run times from a scalability test with increasing input data

sizes on a logarithmic scale. .. 15

Figure 10: Preliminary data integration process chain for the integration of smarticipate data that is not

otherwise available through an open third party data portal.. 19

Figure 11: GitLab is a comprehensive solution for modern software development from start to finish........... 26

TABLES

Table 1: Hardware specification of the rented root server ... 7

Table 1: Definition of logging standard .. 16

smarticipate Deliverable TemplateIntegration Requirements Report

6

1 Introduction

The smarticipate project aims to develop ICT tools for participatory applications, which use Open Data and

other datasets (e.g. land-use, surveys, etc. which are not in public domain). These applications will enable

citizens to co-create, to co-design and to take informed decisions by getting feedback on their innovative

participatory applications. Also, citizens will be able to share their ideas and opinions which should enrich

existing Open Data.

In this respect, smarticipate’s three pilot cities Rome, Hamburg and London (Royal Borough of Kensington

and Chelsea (RBKC)) will actively participate in the development of smarticipate’s applications and data

acquisition. The project follows a rigorous development process which begins with the identification of the

cities’ needs, gathering of their requirements and the definition of use cases. These use cases aim to

accommodate real participatory planning scenarios in these cities where citizen participation is

expected/encouraged. The main idea is to allow citizens to visually see the development proposal through

the smarticipate applications, make changes and get quick feedback on the proposed changes e.g. whether

or not a proposed change is economically feasible or if it is compliant to planning laws or environmental

regulations. Furthermore, these proposed changes might be shared within local neighbourhoods with the

objective to gather additional suggestions, support, criticism, etc. resulting in generating a lot of opinion

based data from citizens.

In order to safeguard the compatibility of the individual components, the appropriate system (hardware)

configuration and specification for data readiness (size) according to the system architecture (WP3), the

following report will document and consolidate the hardware, software and data specifications prior to the

integration of the system. Moreover, it will specify the data to integrate for the individual pilot cases, the

system component and data integration procedures as well as the necessary pre-processing steps. The

processes will be mapped along a deployment flowchart to coordinate the steps and responsibilities along

the implementation of WP6.

smarticipate Deliverable TemplateIntegration Requirements Report

7

2 Integration requirements

2.1 System component specification

2.1.1 Hardware

2.1.1.1 Server for software deployment

In order to guarantee maximum up-time and high Internet bandwidth of the finally developed smarticipate

system, it was decided to deploy all developed software on a physical server located in a professional data

centre. This poses several advantages:

• Adaptability of hardware setup to reflect changing project needs (no big upfront costs)

• Reduced risk of power outage and damage through fire

• High security standards (e.g. protection against DDoS attacks (Distributed Denial of Service))

• 24/7 professional support in case of hardware issues

• Access to high-performance Internet connection

Standard websites are usually deployed on virtual servers offered by data centres. This is a good choice in

case no special software is needed and standard configurations (e.g. Apache webserver, MySQL database,

PHP) are sufficient. The needs of the smarticipate system are quite complex and therefore a dedicated root

server is the better option. With this physical server the configuration is fully flexible, however putting the

burden of the operating system and software installations as well as the maintenance (security fixes etc.) on

the customer. For choosing a suitable server we especially considered the demands of 3D applications

foreseen in some of the cities. This means either an i7 or Xeon CPU (central processing unit) coupled with at

least 16 GB RAM (Random Access Memory) are required. Furthermore data mirroring through a RAID

(Redundant Array of Independent Disks) configuration of the hard disks is necessary to avoid data loss due

to disk failures. We chose a server of the German data centre company Hetzner, which offers a wide range

of virtual and root servers. Hardware specifications of the server are provided in the following table.

Table 1: Hardware specification of the rented root server

Product name Dedicated Root Server EX40

CPU

Number 1 socket with 4 cores

Type

Intel® Core™ i7-4770 Quad-Core

Haswell incl. Hyper-Threading

Technology

RAM

Number 32 GB

Type DDR3

Hard disks

Capacity 2 x 2 TB

smarticipate Deliverable TemplateIntegration Requirements Report

8

Type SATA 6 Gb/s 7200 rpm

RAID Software-RAID-1

Network

Network interface 1 Gbit/s-Port

Guaranteed bandwidth 200 Mbit/s

Traffic included in monthly price 30 TB

In addition to the increased reliability through the hard disk mirroring (RAID-1) dedicated backup space is

being rented from Hetzner in order to carry out regular backups. Such backups are necessary in case data

deletion happens due to human errors.

2.1.1.2 FTP Server

Basically, all smarticipate applications are planned in such a way that web map services are consumed over

the Internet, while traditional data transfers from involved city administration to geodata experts of the

smarticipate team shall be avoided. Since web map services are not available for all relevant data, we still

use an FTP server for traditional data transfers. For this purpose an already existing server of GeoVille’s IT

infrastructure is used.

2.1.2 System component integration

2.1.2.1 Overall system architecture

The smarticipate system architecture depicted in Figure 1 is divided in two major blocks: On the left, there is

the already existing project website (www.smarticipate.eu) which will be serving as a dissemination hub to

spread word about the project and its outcomes. The project webpage is running a WordPress instance and

is managed by ICLEI. Later in the project the project homepage will link to the smarticipate demo portal

(www.smarticipate.eu/platform) and a repository where the platform software will be available for download.

On the right-hand side, there is the actual smarticipate Platform which is composed of the frontend that

exposes the system to the user and facilitates the workflow logic (consecutive execution of logical, atomic

steps in a workflow) and the backend that holds the core functionality in the form of micro services as well as

the basis for all data to be delivered to the services.

WP6 is primarily concerned with the integration of the frontend and backend components and the testing of

their interaction through well-defined interfaces to the individual components.

smarticipate Deliverable TemplateIntegration Requirements Report

9

Figure 1: smarticipate's overall system architecture

2.1.2.2 Docker

Due to the fact that the smarticipate platform is a collaborative effort including several developers each with

individual preferences and requirements for processing and operating environments, the encapsulation of

each micro service into self-contained, runnable containers that only expose an interaction interface is of

fundamental importance to the successful integration of all components into a common infrastructure. For

this reason, Docker images (Figure 2) are introduced as a state-of-the-art way to deploy such lightweight,

self-contained containers of the different components, which can be distributed and used with minimal effort.

Using these containers, developers can choose for each component (or service) the technologies best suited

for the task, independently of other components. The Docker containers communicate via network

interfaces, in most cases based on HTTP. These interfaces shall be RESTful, as described in section

2.1.2.3.

smarticipate Deliverable TemplateIntegration Requirements Report

10

Figure 2: Virtual Machines (left) vs. Docker Images (right)

[Source: https://www.docker.com/what-docker]

As outlined in D3.3 (section 2.1.3.2), Docker Compose is proposed as a tool to describe entire whole

systems of containers in a simple Docker file format.

The developers of a component/service are required to provide the following along with every submission of

a new or updated component:

• Provide a Docker image for their component via a Docker registry, the image should be updated

regularly (ideally via an automated build)

• Provide documentation on dependencies (other available Docker images) and configuration options

• Maintain the Docker Compose configuration

• Provide documentation on interfaces intended for interaction with other components (for instance the

documentation of a REST API exposed by the service)

Developers only need Docker (https://www.docker.com/) and Docker Compose

(https://docs.docker.com/compose/) available on their system to run the whole platform, including the

components of their own and other development teams.

The created Docker Compose configuration can also be used for production, often with only a few

configuration changes required for the different environment. For a deployment on a single host, Docker

Compose can be used directly, for deployment on multiple hosts it can be used for instance in conjunction

with Docker Swarm (https://www.docker.com/products/docker-swarm) or Rancher

(http://rancher.com/swarm/).

2.1.2.3 Component Interface

In a micro service environment, whole workflows are split into separate steps that are realized as individual

micro services. Each service performs a specific task and is minimal in complexity. This requires, however, a

standardized communication between all of these services with the frontend application and, potentially, with

each other. The interior working of the micro services is not exposed to the outside, rather, they are

addressed and respond through RESTful API interfaces. In this way, each micro service wrapped in a

Docker container has a well-defined interface to outside clients. The design of the API is dictated by the

service function and the requirements of the frontend application requesting its functionality. Thus, it is within

the responsibility of the developers (WP4 & WP5) that the RESTful interface of the components corresponds

to the needs of the workflows as defined in the Activity Diagrams (see D6.1 section 2.1.2.1). Ideally the

https://www.docker.com/
https://docs.docker.com/compose/
https://www.docker.com/products/docker-swarm/
http://rancher.com/swarm/

smarticipate Deliverable TemplateIntegration Requirements Report

11

interacting components constituting a specific aspect of a scenario are developed simultaneously during a

SCRUM sprint and in close coordination between the developers to ensure that the request forwarded by the

frontend components are matched with corresponding RESTful API interfaces.

Figure 3 represents the concept of RESTful interfaces to micro services encapsulated in a Docker container.

Figure 3: Schematic representation of a micro service providing a RESTful API wrapped in a Docker container.

Complete and accessible documentation of the API is critical in order to ensure that the component is utilized

correctly and to its full capability. The API shall therefore be documented using Swagger UI

(http://petstore.swagger.io/#/). Swagger UI offers an intuitive and user friendly wiki to a given API. It is

automatically generated from Swagger specifications making it easy to implement and maintain on the

developers´ side. The visually appealing interface provides a user-friendly overview of the API and also

allows for interactive engagement. Figure 4 and 5 provide an example of the Swagger interface listing the

methods of a sample API and how such interfaces are to be documented with a detailed example of the

methods.

Figure 4: Example of a RESTful API documented with Swagger-UI.

http://petstore.swagger.io/#/

smarticipate Deliverable TemplateIntegration Requirements Report

12

Figure 5: Detailed overview of an API method (here: POST) along with interactive testing capabilities.

smarticipate Deliverable TemplateIntegration Requirements Report

13

2.1.2.4 Workflow implementation

The system interaction and communication occurs primarily between the frontend applications and the micro

services that in turn access the data storage components (project DB, third party data repositories). Each

frontend application (smarticipateApp) hosts a range of topics that in themselves constitute a logical software

package for a given use. These scenarios support a workflow of individual steps taken by the end user. It is

possible that any given user interaction prompts the front end to request the functionality of a single micro

service (Figure 6).

Figure 6: The workflows embedded within the scenarios trigger requests to micro services located in the back end.

However, it is also possible and even likely, that a single step in the frontend user interface triggers a request

that needs to be handled sequentially by more than one micro service. The principle of micro services is

colliding with the logical grouping of actions anticipated by an end user of a front end. What may seem to be

a single processing step to an end user may well be a workflow of two or more micro services to the back

end. The principal of intuitive and minimalistic user interaction famously advocated by Steve Jobs
1
 in his

designs dictates that backend functionality must be hidden from users to the largest possible extent. In

contrast, the principle of micro services dictates that services ought to be small and autonomous and not

envelope a whole process chain of functions.

In order to accommodate both requirements, workflows must be orchestrated as chains of multiple micro

services executed either sequentially or in parallel or as a mix of both. Such a scenario requires either a

control component that supervises the execution of this chain of services and reports back the results to the

frontend (Figure 7) or an inter-service communication. The latter will be implemented in smarticipate as it is

not expected that the micro services are utilized as building blocks for user generated workflows but rather

be part of pre-determined and locked workflows (Figure 8). In this case the services that are part of a chain

1
 How Steve Jobs' Love of Simplicity Fueled A Design Revolution | Smithsonian magazine | Sept. 2012

(http://www.smithsonianmag.com/arts-culture/how-steve-jobs-love-of-simplicity-fueled-a-design-revolution-23868877/)

smarticipate Deliverable TemplateIntegration Requirements Report

14

must be aware of each other at least to the extent that they statically call their successor. The absence of a

control component has the beneficial effect that it makes the entire system less error prone since a fault in

the control component would block the execution of all processing whereas the failure of a single micro

service in the latter scenario only affects processing steps that involve that service.

Figure 7: A control component capable of supervising a sequential execution of services is facilitating the communication
between front end and back end.

Figure 8: A request that prompts a chain execution of micro services (B, C, D and F) is executed with the services being
aware of their successors and completing the workflow autonomously before feeding the result to the front end.

smarticipate Deliverable TemplateIntegration Requirements Report

15

2.1.3 Logging

2.1.3.1 Logging standard

A common logging standard across all components is an essential requirement for effective error detection

as well as detailed performance analysis. Logging of, for example, reading, writing and processing blocks

allows developers and system analysts to create performance tests and compare run times for each of those

blocks across different versions thus tracking the effectiveness of performance enhancement measures. In

addition, such information allows the direct quantitative comparison between different environments and their

effect on reading, writing and processing speeds (e.g. reading from different sources or processing in cloud

or cluster environments). Figure 9 illustrates one of many possible test evaluations for a service or system

component based on standardized logging of, in this case, reading, writing and processing blocks.

Figure 9: Reading, processing and writing block run times from a scalability test with increasing input data sizes on a
logarithmic scale.

Developers of smarticipate components are therefore required to implement the following logging standard

for all components developed for smarticipate:

<*{//}{DATETIMESTAMP;EPOCH;COMPONENT_ID;TYPE;BLOCK_OC;BLOCK_TYPE;DATA_SIZE_KB;MESSAGE}

Where

smarticipate Deliverable TemplateIntegration Requirements Report

16

Table 2: Definition of logging standard

PLACEHOLDER MANDATORY DESCRIPTION EXAMPLE

DATETIMESTAMP Yes [Text] Date/time stamp (UTC) with

millisecond resolution in this format:

dd.mm.yyyy_hh:mm:ss.zzz

09.12.2016_23:55:02.274

EPOCH Yes [Long integer] Epoch timestamp in

milliseconds

1481327702274

COMPONENT_ID Yes [Text or Integer] Unique ID of the

smarticipate component (format to be

agreed)

e.g. MS004

TYPE Yes [Text] Keyword “INFO”, “WARNING” or

“ERROR” indicating the nature of this

message.

INFO

BLOCK_OC No [Text] Keyword “open”, “close” or for an

opening or closing block. Leave blank if

log neither opens nor closes a block.

Open

BLOCK_TYPE No [Text] Keyword “read”, “process” or

“write” for a reading, processing or writing

block. Leave blank if not applicable.

write

DATA_SIZE_KB Yes [List[Integer]] List of data sizes in kB

handled by the service. Empty list if not

applicable.

[123,500079,452339]

MESSAGE No [Text] Free text message Saving object to data base

Examples

Opening of a reading block:

<*{//}{09.12.2016_23:55:02.274;1481327702274;MS004;INFO;open;read;[1024];start reading 1MB input file}

Closing the above reading block:

<*{//}{09.12.2016_23:55:04.555;1481327704555;MS004;INFO;close;read;[1024];input read: 1.0MB}

Random message during the execution of a block:

<*{//}{22.01.2017_13:00:37.260;1482823807260;MS033;INFO;;;[]; progress: 13/24 files}

The following logging rules apply:

 The entire run time of a component is the sum of its block run times. I.e. no runtime is unallocated to

either a reading, processing or writing block.

 The first log line opens a block

 The last log line closes an open block

 Upon closing a block, another block is instantly opened in a new log line (except for the last log)

smarticipate Deliverable TemplateIntegration Requirements Report

17

 An open block must be closed before another block can be opened. There must always only be one

block open at any given time.

 Any log line that contains a value for BLOCK_OC must also hold a value for BLOCK_TYPE.

2.1.3.2 Log repository

All components will write their log messages to a server-side implementation of elasticSearch

(https://www.elastic.co/products/elasticsearch) and logStash (https://www.elastic.co/products/logstash) to

hold a common, queryable repository of all logs for analysis and error detection purposes.

2.2 Data specification

Open Geodata is at the core of the smarticipate platform. All smarticipate applications depend on the

availability of freely accessible, standardized and quality assured geodata. This section will specify which

data are of primary importance to the proposed scenarios covered by the smarticipate prototype and how

this data is to be integrated and stored.

Please note, that this section complements the Data Management Plan (Deliverable D2.3) that

will go beyond the described content.

2.2.1 Data storage

The smarticipate prototype will run a geodatabase as part of the backend that holds all available data as

database objects. PostgreSQL (https://www.postgresql.org/) is a leading database management system

(DBMS) that provides a wealth of data storage, manipulation and retrieval solutions. The PostGIS plugin

(http://www.postgis.net/) adds extensive geo-functionality to a PostgreSQL database and allows the storage

of many types of vector and raster formats. In the case of CityGML, there´s no ready counterpart data type in

the database, however, the 3D CityGML DB extension

(http://www.3dcitydb.org/3dcitydb/3dcitydbhomepage/) introduces support for CityGML (v 2.0 and 1.0) to

PostgreSQL databases. Alternatively, GeoRocket (https://github.com/georocket/georocket) may be used to

store 3D CityGML features. GeoRocket shall be evaluated and compared to 3DCityDB in terms of efficiency,

stability and performance during the code camp in Vienna in February 2017. Either option is considered

appropriate for the storage and retrieval of CityGML data.

The above combination of Open Source database solutions thus covers all the data storage needs of the

project. Compatibility between the versions needs to be assured. At the time of writing the combination of

PostgreSQL 9.6.1, PostGIS 2.3 and 3DCityDB 3.3.1 were supported; GeoRocket 1.0 was pending release

(scheduled for end of January).

2.2.2 Metadata standard

This section describes the metadata requirement for data to be integrated into the smarticipate platform. All

data integrated into the smarticipate platform and/or linked to it through access and retrieval services (3
rd

party data repositories) must be accompanied with metadata that adhere to the standard defined below.

The harmonization will be executed according to the following applied ISO as well as relevant OGC

standards. Standards are very useful when it comes to transnational projects in any type of business. The

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.postgresql.org/
http://www.postgis.net/
http://www.3dcitydb.org/3dcitydb/3dcitydbhomepage/
https://github.com/georocket/georocket

smarticipate Deliverable TemplateIntegration Requirements Report

18

spatial data infrastructure in Europe is quite inhomogeneous (not standardised) and therefore limiting the

transnational use of geodata. The INSPIRE Directive (2007/2/EC, Infrastructure for Spatial Information in

Europe) has the aim to establish an infrastructure for spatial information in Europe that will help to make

spatial or geographical information more accessible and interoperable. It addresses 34 data themes needed

for environmental applications, with key components specified through technical implementing rules. As the

process of implementing the rules of INSPIRE is currently at the beginning in Europe, INSPIRE compatible

data are not available at this point of time. The consequence for the smarticipate project is a higher

harmonisation effort as this would be the case after the successful implementation of INSPIRE.

INSPIRE defines its standards based on a number of ISO standards. ISO is a standards organization (by

law), who’s meetings take place on a country level. There is no membership by a company or research or

local government organization - only at the national level. The OGC (Open Geospatial Consortium) can

submit standards for processing and approval as ISO Standards and therefore in smarticipate we are only

referring to ISO standards. Altogether there are currently nearly sixty ISO standards dealing with

geoinformation (the so-called 191xx series) and this number is still growing. The ones relevant for

smarticipate are ISO 19111 and ISO 19115.

ISO 19111 – Coordinate reference systems

ISO 19111 describes the conceptual schema and defines the description for a minimum data to two cases

for which 1-, 2- and 3- dimensional coordinates reference system information shall be given. The first case is

given by a coordinate reference system to which a set of coordinates is related. The second case consists of

a coordinate operation (coordinate transformation, coordinate conversion, concatenated coordinate

operation) to change coordinate values from one coordinate reference system to another.

There are no explicit accuracy numbers given in ISO 19111. We must consider that it has been developed

for geographic information in general, but not for precise positioning. Spatial information may be referenced

to the earth surface with an improving accuracy on the global scale for the future.

The spatial referencing is usually referred to selected points of the earth surface. Such point are, e.g., given

by geodetic markers, stations performing permanent satellite observations, levelling benchmarks, or tide

gauges. As soon as the marker coordinates are given, they provide a direct access to the realisation of the

coordinate reference system.

ISO 19115:2003 – Metadata

ISO 19115:2003 defines the schema required for describing geographic information and services. It provides

information about the identification, the extent, the quality, the spatial and temporal schema, spatial

reference, and distribution of digital geographic data. ISO 19115:2003 is applicable to:

• the cataloguing of datasets, clearinghouse activities, and the full description of datasets;

• geographic datasets, dataset series, and individual geographic features and feature properties.

ISO 19115:2003 defines:

• mandatory and conditional metadata sections, metadata entities, and metadata elements;

• the minimum set of metadata required to serve the full range of metadata applications (data

discovery, determining data fitness for use, data access, data transfer, and use of digital data);

smarticipate Deliverable TemplateIntegration Requirements Report

19

• optional metadata elements - to allow for a more extensive standard description of geographic data,

if required;

• a method for extending metadata to fit specialized needs.

2.2.3 Data integration

As far as data integration is concerned there are two distinct possibilities for that to happen.

The first is to couple the smarticipate platform with existing data repositories. This is done through micro

services that provide access and retrieval capabilities to the repositories identified as relevant to the

smarticipate platform.

The second is the integration of existing data that are not available through predefined portals but are made

available to the project in the form of files or databases. In this case, an integration process chain is needed

that assures the data are

 quality assured (accuracy, reliability, suitability - incl. metadata)

 converted (where necessary)

 imported into the project database

An assessment of the necessary tools and possible degree of automation of such pre-processing tasks can

only be conducted once the available data repositories are described and a selection of desirable data sets

is made. The latter task is pending a comprehensive listing and description of micro services to be

developed. Figure 10 illustrates the preliminary pre-processing chain for manual to semi-automatic data

integration.

Figure 10: Preliminary data integration process chain for the integration of smarticipate data that is not otherwise
available through an open third party data portal.

2.3 Data requirements

The following chapter summarises the data requirement specification activities by identifying data sets that

are requested for the development of the smarticipate system. The availability of open data in cities is the

basis for the development of the smarticipate system and will ensure successful implementation. In this

respect, the use of city specific data enables end users to better contextually relate the smarticipate system

to the local city specific scenarios. However, it is necessary to establish necessary data requirements often

from user requirements definition or specification before the actual designing and implementation of the tools

and applications begins. These data requirements enable end users to assess the extent to which the

required data is available and can be provided.

smarticipate Deliverable TemplateIntegration Requirements Report

20

In order to get better understanding of what data is needed to support the smarticipate system development

and for which city, the following chapter gives an overview on these requested data sets. In general, these

data requirements are derived from the use cases and system requirements specifications.

Explanation:

For smarticipate, high-resolution data is required in order to achieve appropriate results at

local level. The geospatial data sets shall be provided as vector layers. The data should be

provided in best case through the cities open data portal as WFS or WMS, in case the data

are not openly available the provided standard format should be ESRI shape file or ESRI

Geodatabase.

Geospatial data sets are required preferably as vector instead as raster layers. Statistical data

must be provided at least for administrative sub-units in the city (smallest statistical unit) – like

census districts, grid cells, blocks, to allow an investigation on share and the

representativeness of the user sample.

2.3.1 Data requirements: Hamburg

Hamburg has a large amount of open data that is available through the cities open data portal

(http://transparenz.hamburg.de/). The following table summarizes the overall data requirement specifications

for smarticipate system based on the Hamburg scenario. In the case of Hamburg these data requirements

specifications are directly related to the criteria and rules defined in D3.2 Semantic data integration software

and semantic representation concept.

Id Title Description Required data Preferred format

HH-G General data
General background data as base

layer.

 3D data

 Administrative

boundaries

 CityGML

 WFS, WMS

 Shapefile

HH-7
Infrastructure

under ground

One of the most important aspects

are infrastructure below the ground

level, e.g. pipes for water or gas,

power lines, phone and

communication lines and so on.

Data on these structures should be

used to define areas to avoid

planting as the tree roots may

damage those infrastructures and

also trees would have to be cut

down in case a pipe needs to be

repaired. A certain freely

configurable distance to such

infrastructure needs to be

considered.

 Infrastructure below

the ground level

 WFS, WMS

 Shapefile

HH-8
Privately owned

land

Privately owned land is excluded in

all cases
 Ownership

structure

 WFS, WMS

 Shapefile

smarticipate Deliverable TemplateIntegration Requirements Report

21

Id Title Description Required data Preferred format

HH-9
Land use and

planned actions

Land that is already in use for

buildings or streets is obviously not

useable for planting trees. Also,

planned actions should be

considered if data is available. For

example, if construction is planned

for a street no new trees should be

planted until the construction has

been finished.

 Land use and land
cover

 Planning scheme
(planned actions)

 Binding land use
plan

 Imperviousness /
soil sealing

 WFS, WMS

 Shapefile

HH-10

Species is

determined by

neighbourhood of

species

If for example an alley made up of

all the same species of trees is

given, a new tree should be of the

same species, if the tree is

reasonably close to the alley.

 Tree map including
species (current
and planned)

 Tree costs

 Location of parks

 WFS, WMS

 Shapefile

HH-11

Species can be

changed by

definition

In contrast to the rule given above

sometimes a tree species doesn’t

work out as desired on a certain

location. Also, a possible climate

change might influence the

selection of trees to be planted. A

rule should be implemented that

overrides the rule of keeping the

same species with a defined other

species.

 CO2 emissions

 CO2 calculations
(to calculate
reduction by
species)

 WFS, WMS

 REST Service

 for real time

information?

HH-12
Distance to street

lighting

Trees grow and possibly will mask

street lights nearby. A minimum

distance should be kept from such

positions. Positions of street lights

need to be given.

 Above ground
infrastructure
o Location of

street lights
o Power supply

lines

 WFS, WMS

 Shapefile

HH-13
Distance to other

trees

A certain distance to other trees is

needed to avoid competition of both

trees, for example sycamore trees

need a distance of at least 8

meters, around 15 meters would be

best.

 Information on

given distances

(based on city laws)

 WFS, WMS

HH-14

Distance to traffic

signs or traffic

lights

Trees grow and possibly will mask

traffic lights nearby. A minimum

distance should be kept from such

positions.

 Above ground
infrastructure
o Location of

traffic signs or
traffic lights

 WFS, WMS

 Shapefile

HH-15 Flooding areas

Areas which can be flooded should

be avoided in general or a species

that can cope with these needs to

be selected.

 Flooding areas
 WFS, WMS

 Shapefile

HH-16 Condition of soil
Basically, every ground close to

road works is denaturised and
 Soil conditions

 WFS, WMS

 Shapefile

smarticipate Deliverable TemplateIntegration Requirements Report

22

Id Title Description Required data Preferred format

needs to be refurbished. Though

the surroundings of the potential

tree position should be free of

poisonous substances or

demolition materials.

2.3.2 London

Also London has a large amount of open data available which is a good basis for the system development

(https://data.gov.uk/data/search?q=). Nevertheless, as no specific criteria and rules for the development are

defined yet, the data requirement specifications are still on going in close cooperation with the developers.

As soon as the definition of criteria and rules (as in Hamburg) is finalised, the following table will be updated.

Titel Requested Format
Importance for use case
scenario

3D model
 CityGML

 VRML, X3D, 3ds,
MAX (alternative)

If available, not essential

Ownership structure
 WFS, WMS

 Shapefile
essential

Land use plan (Zoning Plan)
 WFS, WMS

 Shapefile
essential

Land Cover (urban green structures, sealed/non-sealed)
 WFS, WMS

 Shapefile
essential

Planning scheme (planned actions)

Binding land use plan

 WFS, WMS

 Shapefile
essential

Zoning information (allowed building types and height zones,
areas classification based on commercial, housing,
infrastructure, industrial and building restriction areas)

 WFS, WMS

 Shapefile
essential

Heritage restrictions/guidelines
 WFS, WMS

 Shapefile
essential

Administrative boundaries (e.g. districts) and postal codes
 WFS, WMS

 Shapefile
essential

Population data (age, place of residence, place of work,
education, …)

 WFS, WMS

 Shapefile
essential

Commuting data
 WFS, WMS

 Shapefile

low (may not be needed
for test case)

Information about existing public transportation
 WFS, WMS

 Shapefile
essential

Existing car parking areas, car sharing points, bicycle
sharing points

 WFS, WMS

 Shapefile
low

smarticipate Deliverable TemplateIntegration Requirements Report

23

 Tables

Air quality data
 WFS, WMS

 Shapefile
essential

Real estate cadastre
 WFS, WMS

 Shapefile
essential

Building cadastre (including information on height, building
material, usage, etc.)

 WFS, WMS

 Shapefile
essential

Tree cadastre
 WFS, WMS

 Shapefile
low

Guidelines for conversion tables essential

Project guidelines tables low

Value of property (market rates and social housing) tables essential

Flood risk map
 WFS, WMS

 Shapefile
low

2.3.3 Rome

Rome has currently only a medium amount of open data available (http://dati.comune.roma.it/). Similar to

London, also in Rome no specific criteria and rules exist yet, that allows a more specific data requirement

specification. Thus, the table needs an update as soon as the process of defining criteria and rules is

finalised.

Titel Requested Format
Importance for use case
scenario

3D model
 CityGML

 VRML, X3D, 3ds,
MAX (alternative)

If available, not essential

Ownership structure
 WFS, WMS

 Shapefile
essential

Land use plan (Zoning Plan)
 WFS, WMS

 Shapefile
essential

Land Cover (urban green structures, sealed/non-sealed)
 WFS, WMS

 Shapefile
essential

Planning scheme (planned actions)

Binding land use plan

 WFS, WMS

 Shapefile
essential

Heritage restrictions/guidelines
 WFS, WMS

 Shapefile
essential

Administrative boundaries (e.g. districts) and postal codes
 WFS, WMS

 Shapefile
essential

smarticipate Deliverable TemplateIntegration Requirements Report

24

Population data (age, place of residence, place of work,
education, …)

 WFS, WMS

 Shapefile

 Tables

essential

Commuting data

 WFS, WMS

 Shapefile

 Tables

low (may not be needed
for test case)

Information about existing public transportation
 WFS, WMS

 Shapefile
essential

Air quality data
 WFS, WMS

 Shapefile
essential

Real estate cadastre
 WFS, WMS

 Shapefile
essential

Building cadastre (including information on height, building
material, usage, etc.)

 WFS, WMS

 Shapefile
essential

Guidelines for conversion tables essential

Project guidelines tables low

Value of property (market rates and social housing) tables essential

smarticipate Deliverable TemplateIntegration Requirements Report

25

3 Deployment

3.1 Continuous integration (CI) / continuous Deployment (CD)

This section introduces the concept of Continuous Integration (CI) and Continuous Deployment (CD)

proposed for smarticipate. Continuous Integration describes a process, where changes to the software (i.e.

its code) are not merged at predetermined intervals but rather instantaneously as soon as changes become

available. These changes are reflected in the master trunk. Similarly, Continuous Deployment refer to the

process of continuously releasing new snippets to the live system (or building installations) whenever these

new snippets have passed the testing stages. This method contrasts the previous regime of deployment in

long release cycles. In essence, the combination of CI and CD ensure that ideas for new features or bug

fixes run quickly through the cycle of coding, integrating, testing and release. The deployment process takes

place in near real time resulting in releases shortly after an updated version of a component has been

submitted by a developer. New uploads to a software repository instantly trigger a sequence of tests and,

upon their successful completion, the deployment of that software component to the operational system.

Continuous Integration and Continuous Deployment depend on a high degree of automation. It should start

immediately when a developer checks code into the code repository. Since this build will be used directly for

a software release, tests of the software are essential in order to avoid the integration of broken components.

Such tests must ensure that the software not only runs but also behaves as expected. Upon passing the

preconfigured tests, the software package is automatically deployed to the production environment. This

concept has the advantage, that the used software packages will always be the most current version and

have the newest bug fixes and features. The software will not be published to the platform without any tests,

so a broken version of a service can be identified and intercepted before being used in the operational

system. As an additional advantage, the developers need not be familiar with the actual deployment process

to the platform. With this approach, the deployment process can support different architectures and

infrastructures.

3.2 Component testing

In order to detect broken versions of a service, the automated tests are essential to the automatic

deployment process. Without tests, there is a chance to use non-working services or services which will

produce false results. The software testing is done in three stages.

First stage is the developer himself, who will perform continuous tests during the development of the

software. This is known as white-box testing, since the developer knows the internal structure of his or her

software. Usually this is carried out by unit testing, where each unit of the source code is tested individually.

For this approach the developer should write test cases which are executed during the build time of the

software packages. When a test case fails, the build is considered faulty and should not be deployed to the

platform. Since the build will be created on the developer’s computer the smarticipate deployment system

will not contain facilities for unit tests. In conclusion, this is in the area of responsibility of the individual

developer and considered a pre-integration task.

The second stage of testing will be testing by a quality manager. In this way, a second person has to have a

look at the software package before it can be deployed to the platform and used in workflows. This should at

least include running the services on an example dataset.

smarticipate Deliverable TemplateIntegration Requirements Report

26

The third stage of testing is the deployment service itself. It will use some automated tests, which must

complete successfully, before the services are considered ready for deployment. These tests will run

automatically, when a new release of a service is submitted to the software repository for the smarticipate

platform. This will usually happen at the end of a sprint when new or updated components are released into

the testing cycle external to the development. These tests will be run using GitLab (Error! Reference

source not found.). For details on the development procedure and contents of SCRUM sprints please refer

to D3.4, section 2.1. Upon successful completion of an integration test, the software package version is

considered “ready for deployment”. I.e. the software component can be used in the operational system. The

deployment process itself will then be based on Docker Compose which specifies the setting and

communication of a multitude of Docker containers.

3.2.1 GitLab

GitLab (https://about.gitlab.com/) is an online Git repository manager with a wiki, source control (versioning),

coding interface, issue tracking, Continuous Integration and Continuous Deployment features (Figure 11).

Figure 11: GitLab is a comprehensive solution for modern software development from start to finish.

It facilitates the management of git repositories on a centralized server. The free Community Edition has

been set up for the smarticipate project to support the entire process chain described above. The

comprehensive product suite of GitLab means that no external tools need to be used to complete the

deployment pipeline, including automated testing with the CI feature.

https://about.gitlab.com/

